Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Public Health ; 23(1): 353, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2258233

ABSTRACT

BACKGROUND: Understanding healthcare-seeking patterns for respiratory illness can help improve estimation of disease burden and target public health interventions to control acute respiratory disease in Kenya. METHODS: We conducted a cross-sectional survey to determine healthcare utilization patterns for acute respiratory illness (ARI) and severe pneumonia in four diverse counties representing urban, peri-urban, rural mixed farmers, and rural pastoralist communities in Kenya using a two-stage (sub-locations then households) cluster sampling procedure. Healthcare seeking behavior for ARI episodes in the last 14 days, and severe pneumonia in the last 12 months was evaluated. Severe pneumonia was defined as reported cough and difficulty breathing for > 2 days and report of hospitalization or recommendation for hospitalization, or a danger sign (unable to breastfeed/drink, vomiting everything, convulsions, unconscious) for children < 5 years, or report of inability to perform routine chores. RESULTS: From August through September 2018, we interviewed 28,072 individuals from 5,407 households. Of those surveyed, 9.2% (95% Confidence Interval [CI] 7.9-10.7) reported an episode of ARI, and 4.2% (95% CI 3.8-4.6) reported an episode of severe pneumonia. Of the reported ARI cases, 40.0% (95% CI 36.8-43.3) sought care at a health facility. Of the74.2% (95% CI 70.2-77.9) who reported severe pneumonia and visited a medical health facility, 28.9% (95% CI 25.6-32.6) were hospitalized and 7.0% (95% CI 5.4-9.1) were referred by a clinician to the hospital but not hospitalized. 21% (95% CI 18.2-23.6) of self-reported severe pneumonias were hospitalized. Children aged < 5 years and persons in households with a higher socio-economic status were more likely to seek care for respiratory illness at a health facility. CONCLUSION: Our findings suggest that hospital-based surveillance captures less than one quarter of severe pneumonia in the community. Multipliers from community household surveys can account for underutilization of healthcare resources and under-ascertainment of severe pneumonia at hospitals.


Subject(s)
Patient Acceptance of Health Care , Pneumonia , Child , Female , Humans , Infant , Kenya/epidemiology , Cross-Sectional Studies , Pneumonia/epidemiology , Pneumonia/therapy , Pneumonia/diagnosis , Cost of Illness
2.
PLoS One ; 18(1): e0277657, 2023.
Article in English | MEDLINE | ID: covidwho-2214773

ABSTRACT

BACKGROUND: Accurate and timely diagnosis is essential in limiting the spread of SARS-CoV-2 infection. The reference standard, rRT-PCR, requires specialized laboratories, costly reagents, and a long turnaround time. Antigen RDTs provide a feasible alternative to rRT-PCR since they are quick, relatively inexpensive, and do not require a laboratory. The WHO requires that Ag RDTs have a sensitivity ≥80% and specificity ≥97%. METHODS: This evaluation was conducted at 11 health facilities in Kenya between March and July 2021. We enrolled persons of any age with respiratory symptoms and asymptomatic contacts of confirmed COVID-19 cases. We collected demographic and clinical information and two nasopharyngeal specimens from each participant for Ag RDT testing and rRT-PCR. We calculated the diagnostic performance of the Panbio™ Ag RDT against the US Centers for Disease Control and Prevention's (CDC) rRT-PCR test. RESULTS: We evaluated the Ag RDT in 2,245 individuals where 551 (24.5%, 95% CI: 22.8-26.3%) tested positive by rRT-PCR. Overall sensitivity of the Ag RDT was 46.6% (95% CI: 42.4-50.9%), specificity 98.5% (95% CI: 97.8-99.0%), PPV 90.8% (95% CI: 86.8-93.9%) and NPV 85.0% (95% CI: 83.4-86.6%). Among symptomatic individuals, sensitivity was 60.6% (95% CI: 54.3-66.7%) and specificity was 98.1% (95% CI: 96.7-99.0%). Among asymptomatic individuals, sensitivity was 34.7% (95% CI 29.3-40.4%) and specificity was 98.7% (95% CI: 97.8-99.3%). In persons with onset of symptoms <5 days (594/876, 67.8%), sensitivity was 67.1% (95% CI: 59.2-74.3%), and 53.3% (95% CI: 40.0-66.3%) among those with onset of symptoms >7 days (157/876, 17.9%). The highest sensitivity was 87.0% (95% CI: 80.9-91.8%) in symptomatic individuals with cycle threshold (Ct) values ≤30. CONCLUSION: The overall sensitivity and NPV of the Panbio™ Ag RDT were much lower than expected. The specificity of the Ag RDT was high and satisfactory; therefore, a positive result may not require confirmation by rRT-PCR. The kit may be useful as a rapid screening tool only for symptomatic patients in high-risk settings with limited access to rRT-PCR. A negative result should be interpreted based on clinical and epidemiological information and may require retesting by rRT-PCR.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Health Facilities , Kenya/epidemiology , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Emerg Infect Dis ; 28(13): S34-S41, 2022 12.
Article in English | MEDLINE | ID: covidwho-2162915

ABSTRACT

Existing acute febrile illness (AFI) surveillance systems can be leveraged to identify and characterize emerging pathogens, such as SARS-CoV-2, which causes COVID-19. The US Centers for Disease Control and Prevention collaborated with ministries of health and implementing partners in Belize, Ethiopia, Kenya, Liberia, and Peru to adapt AFI surveillance systems to generate COVID-19 response information. Staff at sentinel sites collected epidemiologic data from persons meeting AFI criteria and specimens for SARS-CoV-2 testing. A total of 5,501 patients with AFI were enrolled during March 2020-October 2021; >69% underwent SARS-CoV-2 testing. Percentage positivity for SARS-CoV-2 ranged from 4% (87/2,151, Kenya) to 19% (22/115, Ethiopia). We show SARS-CoV-2 testing was successfully integrated into AFI surveillance in 5 low- to middle-income countries to detect COVID-19 within AFI care-seeking populations. AFI surveillance systems can be used to build capacity to detect and respond to both emerging and endemic infectious disease threats.


Subject(s)
COVID-19 , Communicable Diseases , United States , Humans , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Testing , Fever/epidemiology
4.
COVID ; 2(10):1491-1508, 2022.
Article in English | MDPI | ID: covidwho-2082156

ABSTRACT

An important step towards COVID-19 pandemic control is adequate knowledge and adherence to mitigation measures, including vaccination. We assessed the level of COVID-19 knowledge, attitudes, and practices (KAP) among residents from an urban informal settlement in the City of Nairobi (Kibera), and a rural community in western Kenya (Asembo). A cross-sectional survey was implemented from April to May 2021 among randomly selected adult residents from a population-based infectious diseases surveillance (PBIDS) cohort in Nairobi and Siaya Counties. KAP questions were adopted from previous studies. Factors associated with the level of COVID-19 KAP, were assessed using multivariable regression methods. COVID-19 vaccine acceptance was 83.6% for the participants from Asembo and 59.8% in Kibera. The reasons cited for vaccine hesitancy in Kibera were safety concerns (34%), insufficient information available to decide (18%), and a lack of belief in the vaccine (21%), while the reasons in Asembo were safety concerns (55%), insufficient information to decide (26%) and lack of belief in the vaccine (11%). Our study findings suggest the need for continued public education to enhance COVID-19 knowledge, attitudes, and practices to ensure adherence to mitigation measures. Urban informal settlements require targeted messaging to improve vaccine awareness, acceptability, and uptake.

5.
Wellcome Open Res ; 2022.
Article in English | EuropePMC | ID: covidwho-2056409

ABSTRACT

Background: Acute respiratory illnesses (ARI) are a major cause of morbidity and mortality globally.  With (re)emergence of novel viruses and increased access to childhood bacterial vaccines, viruses have assumed greater importance in the aetiology of ARI. There are now promising candidate vaccines against some of the most common endemic respiratory viruses. Optimal delivery strategies for these vaccines, and the need for interventions against other respiratory viruses, requires geographically diverse data capturing temporal variations in virus circulation. Methods: : We leveraged three health facility-based respiratory illness surveillance platforms operating in 11 sites across Kenya. Nasopharyngeal (NP) and/or oropharyngeal (OP) specimens, patient demographic, and clinical characteristics were collected in 2014 from individuals of various ages presenting with respiratory symptoms at the surveillance facilities. Real time multiplex polymerase chain reaction was used to detect rhinoviruses, respiratory syncytial virus (RSV), influenza virus, human coronaviruses (hCoV), and adenoviruses. Results: : From 11 sites, 5451 NP/OP specimens were collected and tested from patients. Of these, 40.2% were positive for at least one of the targeted respiratory viruses. The most frequently detected were rhinoviruses (17.0%) and RSV A/B (10.5%), followed by influenza A (6.2%), adenovirus (6.0%) and hCoV (4.2%). RSV was most prevalent among infants aged <12 months old (18.9%), adenovirus among children aged 12–23 months old (11.0%), influenza A among children aged 24–59 months (9.3%), and rhinovirus across all age groups (range, 12.7–19.0%). The overall percent virus positivity varied by surveillance site, health facility type and case definition used in surveillance. Conclusions: :   We identify rhinoviruses, RSV, and influenza A as the most prevalent respiratory viruses. Higher RSV positivity in inpatient settings compared to outpatient clinics strengthen the case for RSV vaccination. To inform the design and delivery of public health interventions, long-term surveillance is required to establish regional heterogeneities in respiratory virus circulation and seasonality.

SELECTION OF CITATIONS
SEARCH DETAIL